Brine spills: Causes, Consequences, and Remediation

Kerry Sublette Sublette Consulting, Inc.

UNDERSTANDING RISKS OF MANAGING OIL AND GAS WASTEWATER

Produced water spills are all too common

- Huge volumes of produced fluids (oil + brine) generated and moved by pipeline to tank batteries
- Costly management and disposal; brine moved by pipeline and truck to injection wells
- Highly corrosive and damaging to infrastructure
- Produced water management cost money, it does not make money!

Spills of produced water or brine on soil result in two types of damage:

в

Excess salinity

- Creates an osmotic imbalance that reduces water uptake by plant roots. Plants can go into drought stress even though there is plenty of water in the soil.

Spills of produced water or brine on soil result in two types of damage:

- Excess sodicity (an excess of sodium)
 - Destroys soil structure by dispersing clays
 - Produces a hardpan that will not transmit water
 - Erosion

Both salinity and sodicity must be addressed in any successful remediation of a brine impacted site

In situ vs. *ex situ* remediation of brine spills

- Ex situ (dig and haul)
 - Sometimes required for immediate protection of an environmental receptor
 - Excavation destroys thousands of years of soil development
 - Replacement soil may be or poor quality and different chemical and physical properties and/or contain invasive species
 - Plant communities on replacement soil will be totally different from the original
 - Ex situ sites are typically more subject to erosion and soil compaction, struggling plant communities, diminished productivity, shallow root penetration, etc.

In situ vs. *ex situ* remediation of brine spills

- In situ
 - Minimally disrupts soil integrity, generally results in more productive plant communities comparable to pre-spill conditions
 - In situ treatment generally not suitable with shallow water tables due to high probability for groundwater contaminations
 - In situ treatment is much less costly that ex situ treatment but requires more time

Remediation of a Brine Spill In Brief

- First response
 - Flushing and containment
- Reducing salinity
 - Breaking open the soil
 - Bulking agents
 - Fresh water
 - Drainage
- Reducing sodicity
 - Soluble calcium ion to reverse sodic reaction with clays
- Revegetation
 - Taking advantage of plant root systems

Remediation of a Brine Spill: What Goes Wrong?

- The number 1 reason for failure of *in situ* remediation of a brine spill on soil is a lack of understanding of the basic processes of
 - flushing the salinity,
 - drainage and handling of leachate, and
 - reversing sodicity.
- There is no magic bullet! It's science and engineering.

Total Disolved Solids from the Produced Waters Database in the United States

What you will hear this afternoon

- The basics of *in situ* remediation and what we learn from what goes wrong
- Advanced site characterization
- Advances in electrokinetics
- Site reclamation and restoration meeting regulatory and landowner standards
- Case studies from ND